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Introduction

• understand pA suppression before hot effects in AA

• several effects have been proposed:

• shadowing/nPDF effects
• CGC/saturation effects
• in-medium ‘nuclear absorption’

• parton radiative energy loss

no real consensus on relative importance of those effects 

(might be the main effect at large enough energy) 

this talk:  parton energy loss



Gavin-Milana model for J/psi pA suppression (1992)

• at that time: spread belief that any induced �E
should be bounded when E ! 1

• Gavin-Milan ‘explanation’ was put aside

�E / E advocated by some groups:still,(
Frankfurt & Strikman 2007; Kopeliovich et al 2005 )
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Gavin & Milana
PRL 68 (1992)1834



(1) parton suddenly produced in medium
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(2) forward scattering of  fast ‘asymptotic parton’
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• Armesto et al PLB 717 (2012) 280, JHEP 1312 (2013) 052
• semi-classical method + opacity expansion 

• hard process: q ! q mediated by singlet t-channel exchange
• harmonic oscillator approximation

for  forward scattering 1 ! 1
coherent induced radiation spectrum

• derivation at first order in opacity extrapolated to all orders
• Feynman diagrams + opacity expansion 

• hard process: g ! QQ̄ mediated by octet t-channel exchange

• Arleo, S.P., Sami  PRD 83 (2011) 114036 (APS10)

• parton mass dependence
•  rigorous calculation for Coulomb rescattering

• Feynman diagrams + opacity expansion 
1 ! 1• hard process: all

• general rule for color factor

• S.P.,  Arleo, Kolevatov 1402.1671 (2014) (PAK14)
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 pocket formula for induced coherent spectrum (PAK14)
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• generalizes results found previously in particular cases

x• captures correct limiting behaviour at small

• at large 
x

: proper normalization requires working
beyond harmonic oscillator approximation (PAK14)



color factor given by interference term:

forward scattering with1 ! 1 CR 6= CR0
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coherent radiation g ! QQ̄associated to 

model for quarkonium pA suppression
application to phenomenology:

Arleo, S.P., 1204.4609 and 1212.0434             (AP12)
Arleo, Kolevatov, S.P., Rustamova 1304.0901             (AKPR13)
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p? > �q?(L)

xFat large �~p?: recoil parton ( ) must be ‘soft’ 

1 ! 1 forward process

(compact)
color octet�~p?



d� pp/dxF• taken from experimental data
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Q

2
sp(x = 10�2) = 0.11� 0.14 GeV2q̂0 corresponds to

consistent with fits to DIS data Albacete et al (AAMQS) 2011



J/ NA3 Pt/p 



RHIC d-Au (PHENIX) 

y
-3 -2 -1 0 1 2 3

(y
)

dA
u

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E. loss
PHENIX

 = 0.2 TeV s  ψd-Au J/

LHC p-Pb (ALICE) 
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 = 5 TeV s  ψp-Pb J/

(nPDF/saturation alone cannot achieve such global description)

coherent radiation alone ‘‘explains’’ J/psi pA suppression
from fixed target to collider energies

�E / E leading effectcoherent energy loss 



-dependence of J/psi suppressionp? (AKPR13)
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remark: is insensitive to Cronin effect

no free parameter:
�p? �Einduces

energy loss ! normalization

�p? ! Cronin effect
L. Kluberg et al (1977)



-dependence of J/psi suppressionp? (AKPR13)
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-dependence of J/psi suppressionp? (AKPR13)

LHC p-Pb (ALICE) 

‘Cronin effect’ seems overestimated by the model
at collider energies:

ALICE 1308.6726 



is not largexFat RHIC and LHC,

xF =
2M?p

s

sinh y

RHIC 
p
s = 200GeV

p
s = 5TeVLHC 

p? = 3GeV y = 1.7 xF ' 0.12);

p? = 6GeV y = 3 xF ' 0.027; )

1 ! 1 process becomes invalidassuming 

consider 1 ! n

pair is not really leading !cc̄

influence on and ?RpA(y) RpA(p?)
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Ki? ⇠ O (Qhard)

xh ⇠ O (1)

Liou & Mueller PRD 89 (2014) 074026
•  dipole formalism -- forward symmetric dijet (xh = 1/2)

g ! qq̄ q ! qg,

S.P., Kolevatov JHEP 01 (2015) 141
•  Feynman diagrams + opacity expansion

q ! qg , g ! gg

| ~K1? + ~K2?| . QsbutK1?,K2? � Qs

processescoherent induced radiation in 1 ! n



1 ! 1effectively the same as for processes
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• an important consequence:

suppose we don’t know if  is produced via 1 ! 1 1 ! 2or

E
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induced coherent radiation is the same (leading log, andR = R0)
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coherent radiation does not change dijet structure
all energies are rescaled by same factor z0

• on the contrary: Cronin effect depends on dijet structure
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|{z}
same as 

1 ! 1for

• dijet undergoes global rotation of angle ✓s =
�q?
E

• each dijet constituent undergoes same rotation: ✓s =
�pi?
Ei

�pi? / Ei

�q? ⌧ p? )

predictions for ) independent of dijet structureR pA(y)

predictions for ) depend on R pA(p?) xh



 light hadron suppression at the LHC 
Arleo, Kolevatov, S.P. (work in progress)         
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energy loss vs broadening at LHC

• opposite trends between energy loss and broadening effects

energy loss only broadening only



light hadron suppression vs LHC data

• model consistent with CMS (and ALICE) data

• model is preliminary: large uncertainty on xh

• no Cronin enhancement at low xh
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Summary

induced coherent radiation

• is a QCD prediction

• explains RJ/ 
pA (y) at all

p
s

• plays a role for all 1 ! n processes

• must be combined with ‘Cronin’ for RpA(p?)


